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Abstract

Preventing cheating on tests is crucial, but in the event of failure to prevent it, detecting 

its presence and impact on scores is equally important. Many statistical indices have been 

developed for this purpose in nearly 100 years of research, often in a quest for the “best” 

index. The premise of this study is that: (a) Cheating is manifested in different patterns of 

aberrant responding, (b) No single index can effectively detect all such patterns, and thus 

(c) A suite of different indices working together should be more effective at identifying 

anomalous responding indicative of potential cheating. Two methods for simultaneous 

consideration of a suite of 7 indices were investigated for detecting three patterns of 

cheating that were manipulated in random subsamples of actual data from two high stakes 

credentialing tests. Discriminant function analysis distinguished presence and impact of 

cheating through different linear combinations of the indices. An alternative approach 

based on testing the fit of individuals’ profiles across the 7 indices to heuristic model 

profiles for each cheating pattern led to similarly accurate classifications of test-taker’s 

into their manipulated cheating groups. This profile similarity method provides a means for 

theory development and model testing, in aggregating any number of individual statistical 

indices for detecting fit to any modeled pattern of interest.
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1. Introduction
Preventing cheating on tests in occupational and 
educational settings is crucial, but in the event of failure 
to prevent it, detecting its presence and impact on scores 
through forensic data analysis is equally important. 
Investigations into the statistical detection of likely 
cheating and other abnormalities in test-taker response 
behavior have been documented dating back nearly a 
century to Bird (1927, 1929). In recent years, attention 
paid to these methods has increased dramatically with 
the more widespread use of computer-based testing 
practices in high-stakes settings where test-taker’s may 
be motivated to cheat. The increasing availability of data 
stored by computer-based testing systems has provided 
greater capability for building forensic analysis models 
from item response data as well as associated collateral 
data (e.g., response times) and meta-data (e.g., date, 
time, and location of tests).With such data more readily 
and immediately available for analysis, research in data 
analytics for forensic investigations into fraudulent test-
taker behavior has increased in recent years.

In much of the research in statistical detection of aberrant 
response patterns over the years, cheating has implicitly 
been defined as one test-taker colluding with another 
while taking the test (e.g., Sotaridona et al. 2006; Wollack, 
2003), and much of the research has the feel of a search for 
the single best detection index for that scenario.  However, 
there is a range of scenarios in which cheating may occur 
either before the test (e.g., gaining advance access to 
pirated test content), during the test administration 
(e.g., copying answers directly from another test-taker) 
or after the test (e.g., answers being changed after-the-
fact). Moreover, different indices may be better suited 
for detecting some patterns in the data than others so 
that identifying the best index depends on which pattern 
one wants to detect. Further still, a carefully selected 
set of multiple indices might, on the whole, allow for 
distinguishing between the different patterns in a way that 
any single index is incapable of. The current study explores 
detection of pre-knowledge and answer-copying patterns 
using a set of indices that are expected to detect different 
patterns.

2. Literature Review

2.1 Response Similarity

One traditional analysis strategy for detecting the 
presence of cheating effects in item responses is to look 
at the similarities in response patterns by counting the 
number of matching responses between test-taker’s and 
comparing the number to an expected value such as the 

number expected by chance. Many indices are of this form, 
including those by Bird (1929), Saupe (1960), Angoff (1974), 
Frary et al. (1977), Bellezza and Bellezza (1989), and Wollack 
(1997). Some indices focus only on matching incorrect 
answers, while others focus on all matching answers. 
Criteria for detecting anomalies are based on comparisons 
to expected values for the number matching based on 
theoretical distributions in some cases and derived from 
empirical data in others.

Research comparing various indices for detecting 
cheating, and developing new strategies in this realm, has 
continued into the 2000s. Examples include development 
of refined expected values of matching responses based 
on assumptions regarding the typical response behavior 
of answer-copiers (van der Linden & Sotaridona, 2004), 
adaptations of Cohen’s (1960) kappa for detecting 
inflated agreement in response choices beyond chance 
(Sotaridona et al., 2006), and use of regression models 
to identify outliers in observed vs. predicted matching 
response counts, taking into account total score (Weiner, 
et al., 2013; Weiner, et al., 2014). Each of these various 
indices has its strengths and weaknesses, possibly under 
different sets of circumstances, making it difficult to 
identify a single best index for all scenarios.

2.2 Score Similarity

Another strategy for detecting cheating is to analyze 
patterns of item scores, after the raw responses (e.g., A, B, 
C, D) are converted to correct/incorrect (i.e., 1, 0) status. 
Person-fit statistics (e.g., Karabatsos, 2003) may be used to 
flag individuals that produce score patterns substantially 
contradicting model predictions. These indices will, by 
their design, “miss” aberrant patterns that occur strictly 
among the incorrect options, such as an individual 
with a wrong response copying another test-taker’s 
different wrong response, because all incorrect options 
are collapsed to a value of “0” before these statistics are 
computed. This suggests that such indices may only be 
effective when the behavior directly impacts item scores 
but will not detect all forms of answer-copying. On the 
other hand, they are likely to be effective at detecting 
pre-knowledge because prior access to the content or the 
answer key is more likely to directly impact scores. Again, 
there are many options for this type of index, including 
36 that Karabatsos (2003) compared; while some appear 
generally stronger than others it is difficult to identify a 
single best index for all situations.

2.3 Presence vs. Impact of Cheating

The distinction between sensitivity to raw item responses 
and item scores is not often recognized in comparisons of 
alternative indices and does not in itself suggest one type 
of index is better than others. Instead, the distinction helps 
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to highlight a potentially important distinction between 
measures of the presence of cheating versus measures of 
the impact of cheating. One needs to look carefully at how 
different indices are computed in order to evaluate what 
patterns they might be capable or incapable of detecting, 
so that multiple indices can be selected to detect multiple 
potential patterns. Detecting the presence of cheating, 
despite its impact on scores, could be an important part of 
a bigger-picture test security monitoring system designed 
to look for security weaknesses at a system-level with a 
prevention and quality control focus. Detecting presence 
and impact together may be used in cases of detecting 
individual cases to investigate further for score validation. 
In any case, a suite of both presence and impact measures 
of aberrant response patterns would seem to have value 
for a test security analysis system, with multiple measures 
of each type used to replicate and corroborate detection 
of patterns across multiple indices. This may allow some 
indices to compensate for others if the different indices 
are differentially sensitive to elements of a particular 
situation (e.g., on easier exams, on shorter exams, when 
fewer items are copied, etc.).

2.4 Combining Detection Indices

While the use of multiple indices to corroborate findings 
or detect multiple patterns is not necessarily a novel idea, 
strategies for combining the multiple indices have not 
been extensively investigated in the extant literature. An 
exception is a study by Wollack (2006) who investigated 
different pair and triplet combinations of a set of indices 
to search for the combination with the best power and 
Type I error performance. Each index was computed and 
converted into a null hypothesis significance test, and 
the rejection decisions from each test were submitted to 
decision rules where, for example, the null hypothesis was 
rejected if at least one index in the pair was statistically 
significant at an adjusted alpha level of α/2. A particular 
pair of indices that were each sensitive to different 
patterns (answer copying that occurs randomly vs. in runs 
or strings of adjacent items) emerged as most effective 
for the manipulated conditions in the study. The study 
supports the notion of combining information from 
multiple indices. However, the specific methodology was 
limited to indices with associated null hypothesis tests. 
Moreover, it relied on the dichotomous rejection decision 
from each individual test which could result in a loss of 
information on magnitude or effect size. This means it 
would likely suffer a loss in power if more than two or three 
tests were combined, given the increasing adjustments to 
the alpha level.

3. Present Study
The current study was carried out to evaluate an 
alternative approach toward combining multiple (possibly 
many) indices to detect different aberrant patterns 
reflecting different cheating scenarios. The general 
approach was to analyze test-taker profiles across multiple 
indices, drawing conclusions at the level of a test-taker’s 
overall profile rather than on each of the individual tests 
within the profile. The study explored the development of a 
model using optimally-weighted composite scores across 
a set of alternative indices through discriminant function 
analysis. An alternative profile analysis approach was 
also developed to address potential limitations in the first 
approach. In both cases, theoretical meaningfulness and 
classification accuracy were considered.

4. Method

4.1 Data

The primary data were from a high-stakes credentialing 
exam with test-taker’s (N = 1551) who completed a 140-
item form of an exam from a Rasch-calibrated item bank. 
A secondary cross-validation dataset (N = 1169) from a 
different exam of the same length was also developed from 
a Rasch-calibrated item bank. In each case, the dataset 
was viewed as a “haystack”, with randomly sampled cases 
drawn out, partially manipulated, and planted back into 
the haystack and conceptualized as “needles.” Model 
building ensued by exploring detection of the needles in 
the haystack. The haystacks in this scenario were made 
up entirely of real examinees’ responses to the items, and 
the needles were likewise based on a subset of examinee 
responses that were partially manipulated. Given prior 
screening of items for sufficient fit to the Rasch model, 
these were expected to provide suitably well-behaved 
datasets, with greater ecological validity than purely 

simulated data. 

4.2 Design

The study included three experimental (needle 
manipulation) conditions and one control (natural 
response) condition. The needle manipulations were 
carried out following two paradigms, leading to three 
groups, with 5% of test-taker’s falling into each group (for 
a total of 15% cheating). The first was a response similarity 
paradigm, where for each cheater another test-taker within 
the data set was sampled as their source, and some of 
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the cheater’s answers were overwritten by their source’s 
answers. The second paradigm was an item pre-knowledge 
pattern (conceptualized similarly to Belov, 2016) where 
samples of items were selected, and each sample treated 
as a compromised set that a group of cheaters had access 
to, and each cheater’s original answers were replaced 
with the correct answers on the majority of these items. 
The first paradigm was used to create two groups (Copy 
Random and Copy Upward) while the second paradigm 
was used to create one group (Pre-Knowledge). Table 1 
outlines the conditions that were manipulated to create 
the three experimental groups.

4.2.1 Copy Random Group

For the first group, a random sample of 5% of test-taker’s 
was selected from throughout the full ability range to 
serve as cheaters, and each was paired with a source 
that was likewise sampled from throughout the ability 
range. Each cheater “copied” their source’s answers on a 
different random sample of 30-40% (average 35%) of test 
items which Wollack (2006) described as “major” copying. 
No constraints were placed on how difficult the items 
were that they copied. The purpose of this group was to 
evaluate a condition with no assumptions about who 
cheats, who they cheat from, or on which items they are 
most likely to cheat. For the purpose of the current study 
it creates a group for whom cheating is present, yet scores 
are not always impacted.

4.2.2 Copy Upward Group

The second group was constructed through a similar 
process to the first group except that constraints were 
placed on the ability levels of the cheater and source, and 
the difficulty levels of the items. The random sampling of 
cheaters was constrained such that their standard score 
on the test fell below -1, while the random sampling of 
sources was constrained to standard scores above +1. The 
random sampling of items was constrained such that they 
each copied a different (but likely overlapping) 30-40% of 
items that were generally among the more challenging 
(p-values below .75). This pattern is one where lower ability 
test-taker’s improve their chances of obtaining correct 
item scores on difficult items, by copying off a higher ability 

test-taker. It should be noted that while the chances of 
improving item scores are increased by this manipulation 
overall, in individual cases some of the answer copying 
may be ineffective due to copying wrong answers.

4.2.3 Pre-knowledge Group

The third group was similar to the second group except 
that it was created with a pre-knowledge paradigm similar 
in concept to Belov (2016). Lower-ability test-taker’s 
(standard scores below -1) were again sampled, and they 
were again manipulated to have cheated on the relatively 
more difficult items (p-values below .75). However, their 
cheating manipulation was not carried out by copying 
answers directly from another test-taker but instead 
through manipulation of the keyed response as if they 
had prior knowledge of the items. Four “compromised” 
item sets were created by taking separate but possibly 
overlapping, samples of 40% of the test items. These 
four item samples represented four sets that were 
hypothetically pirated and made available to test-taker’s 
before the test. Each cheater was linked to one of the 
four item sets, and their original, natural responses to a 
randomly selected 90% of items in their set were replaced 
by the correct answer. Selecting a different 90% of the 
items for each test-taker served two purposes. First, it 
represented either fallibility in test-taker’s’ memories of 
the content they were exposed to or fallibility in what they 
understood to be the correct answers on their pirated 
content (stolen content does not necessarily have correct 
answers marked). Second, selecting 90% of the items 
results in a proportion of items with manipulated results 
that is similar in size to the average number of manipulated 
responses in each of the previously-defined groups.

4.2.4 Natural Responses Group

This group is the remaining 85% of test-taker’s for whom no 
manipulation of item responses was introduced. The test-
taker’s’ original responses were left untouched, making it a 
realistic comparison baseline. It should be noted that the 
answer-copiers’ “sources” were selected from among this 
group – which implicitly assumes that sources are innocent 
victims of copying, that they allow others to copy from 
them, or that they help coach others beforehand without 

TABLE 1.   MANIPULATIONS OF "CHEATING" RELATED DATA PATTERNS
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themselves being influenced by the other test-taker’s 
(making their own responses their “natural” responses).

4.3 Statistical Indices

Several indices were selected that, by their nature, were 
expected to differentially detect the presence versus 
impact of manipulated response patterns. Our goal was to 
select indices that were expected to detect the different 
patterns based on how they are computed. General 
descriptions are summarized in Table 2 and additional 
discussion follows. 

4.3.1 Measures of Impact

Two indices were selected for detecting cheating-related 
response behaviors that directly (and solely) impact 
scores: H

i
T and C

i
*. Both of these measures are based only 

on item scores, so they do not “see” the original responses 
test-taker’s gave to the items. Our attention to these 
indices came from a review of Karabatsos’ (2003) study 
comparing 36-person fit statistics, where he found H

i
T 

(Sijtsma & Meijer, 1992) to be the strongest or among the 
strongest for detecting five manipulated score patterns 
with later studies by Dimitrov and Smith (2006) and 
Tendeiro and Meijer (2014) replicating the utility of H

i
T. 

Karabatsos also found Sato’s (1975) caution index C
i
 and 

Harnisch and Linn’s (1981) modified caution index (C
i
*) to 

be nearly as effective.

An advantage of C
i 
and C

i
* is that they involve only the 

focal test-taker’s observed response pattern, comparing 
it against a Guttman pattern defined in accordance with 
rank ordered item difficulties, which can come from prior 
administrations of the items through pretesting. H

i
T on the 

other hand involves covariances between a test-taker’s 
observed item score patterns and the patterns of the other 
test-taker’s in the sample under investigation, making 
it potentially more vulnerable to the effects of sample 
characteristics. Thus, while Karabatsos found  
H

i 
T to work slightly better in simulated data, it would 

seem more potentially vulnerable to the effects of sample 
characteristics since C

i 
and C

i
*, if computed from archived 

p-values not involving the sample under investigation, 
would not be influenced by sample characteristics. As our 
goal was to build a suite of indices that would allow for 
balance among their individual strengths and potential 
limitations, we included both H

i
T and C

i
* rather than 

picking just one.

4.3.2 Measures of Presence

For detecting the presence of cheating regardless of 
impact on scores, we included several measures that 
are based on similarities in raw item responses. First, we 
elected to use an adaptation of Cohen’s (1960) kappa 
following the logic of Sotaridona et al.’s (2006) recoding 
scheme, where correct options are coded as 1 and 
incorrect options are coded as 2, 3, and 4 in descending 
order of popularity (option p-values), conditioned on a test-
taker’s score level. We saw this measure as an incremental 

TABLE 2.   INDICES OF ABERRANT RESPONSE PATTERNS SELECTED FOR DEFINING THE GROUP PROFILES
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step away from the “impact” measures that were sensitive 
only to the correct/incorrect status of an individual’s 
responses, in that the recoded kappa (κ

r
) index retains the 

distinction among the incorrect categories and uses this 
information instead of collapsing all incorrect categories 
into a score of zero. Another potential advantage of κ

r
 is 

that it involves only the response patterns of two test-
taker’s, along with response option p-values which can 
be computed from prior administrations, while all other 
indices described below require a comparison against a 
pool of other test-taker’s. This should make κ

r
 less sensitive 

to sample characteristics.

Second, to move further away from the “impact” measures 
that are sensitive only to the correct/incorrect status 
of a response, we used Angoff ’s (1974) Index B which 
only includes analysis of similarities among incorrect 
answers—precisely the information that is lost in the 
impact measures by their collapsing of all incorrect 
answers into a score of zero. For B, the number of matching 
errors in each pairing of test-taker’s is standardized against 
a mean and standard deviation of matching errors that 
are computed from the data and are conditioned on the 
stratum that each pairing of test-taker’s falls into. The 
strata are defined along a continuum created from the 
products of the numbers of errors made by each member 
of each pairing of test-taker’s. 

Third, we sought to include measures that did not 
distinguish between correct and incorrect answers at 
all but instead simply looked at matches among the raw 
responses. A number of such indices can be found in the 
literature, including some widely-cited indices involving 
conditional probability computations from option-level 
probabilities derived from item response models (Frary et 
al., 1979; Wollack, 1997). For the current investigation we 
opted for simpler indices including, and derived from, the 
J

2
 index (Weiner et al., 2013) that starts by simply counting 

the number of matching responses between each 
pairing of test-taker’s and saving the maximum observed 
match count for each test-taker. For J

2
, these maximum 

match count values are regressed onto the test-taker’s 
number correct test scores to obtain predicted maximum 
values for each test score. J

2
 for each test-taker is their 

standardized residual from this regression model. Large 
positive standardized residuals are taken to indicate that 
a test-taker had a maximum match count that exceeded 
the expected maximum value for people with the same 
number-correct score and may indicate collusion.

Two other indices presented here were derived as 
alternatives to J

2
. First, an index we refer to as J

3
 is 

computed identically to J
2
 except that each test-taker’s 

average number of matches across the pool of test-taker’s 
is substituted into the regression equation in place of their 

number-correct scores as predictors of the maximum 
value. Positive standardized residuals from this model 
indicate that one’s maximum observed value exceeds the 
expected maximum for people with their average match 
count. Since test scores (the sum of item scores) are not 
used in the index at all, it is even further away from the 
“impact” measures in how it is computed—the model is 
derived entirely from match count information. A related 
index we refer to as Z

i
 is an individually-standardized value 

for each match count, where one’s match count with each 
other test-taker is standardized against his or her own 
average and standard deviation of match counts across all 
pairings with other test-taker’s.

4.3.3 Index Scaling

Some indices are computed as a single value for each test-
taker (C

i
*, H

i
T, J

2
, J

3
) while others (Z

i
, κ

r
, and B) are computed 

separately for each pairing of all test-taker’s. For the latter 
set, individual test-taker’s’ values for the current analysis 
were set to their maximum observed values, as these 
would be the most likely cases of collusion if any occurred 
at all. Next, all indices were placed onto the same metric 
to improve interpretability of subsequent analyses, by 
standardizing each with respect to its mean and standard 
deviation in the “natural response” group. In addition, the 
standardized H

i
T scores were reflected so that, like all 

other measures in this study, higher values are expected to 
represent more aberrant responding.

4.4 Analysis Strategy

Discriminant function analysis was carried out to form a 
weighted composite of each test-taker’s profile across the 
standardized index values, with weights that maximally 
differentiated between groups. With four groups to 
differentiate (including the baseline “natural response” 
group), the analysis produced three weighted composite 
functions and assigned cases to groups using the 
associated classification coefficients. Each successive 
function had prior functions partialled. out so that 
each provided unique separation of groups beyond the 
previously-defined functions. The “loadings” of each index 
onto each function were examined to understand which 
indices were most strongly associated with each function, 
then average function scores (group centroids) for each 
group were evaluated to investigate which groups tended 
to be differentiated by each function. Finally, a comparison 
of predicted group membership to actual group 
membership gave a sense of how accurately the functions, 
taken together as a set, were able to place individuals into 
their groups. Follow-up analyses involved comparison to 
classification accuracy based on each test-taker’s degree 
of fit to model profiles across the standardized indices, as 
measured by the similarity index D.
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5. Results

5.1 Descriptive Statistics

Table 3 provides descriptive statistics across groups, and 
Table 4 provides correlations among the raw values of 
the statistical detection indices. Not surprisingly, very 
high correlations were observed between C

i
* and H

i
T and 

between J
3
 and Z

i
, and other indices were moderately to 

strongly correlated as well.

5.2 Discriminant Functions from Standardized 
Indices

Table 5 summarizes the results of the discriminant 
function analysis. The squared canonical correlation 
coefficients (R2) in Table 5 indicate strong effect sizes for 
the first two functions (.73 and .45, respectively), with a 
considerably smaller effect size for the third function (.12). 
The first two functions accounted for over 96% of the 
cumulative variance in the solution.

The structure coefficients for the first function reveal 
that it is most strongly associated with the C

i
* and H

i
T 

indices, and the group centroids reveal that this function 
distinguishes the groups whose scores were consistently 
impacted by their cheating strategies (Pre-Knowledge 
centroid = 6.22; Copy-Upward centroid = 3.25) from those 
whose cheating strategies did not systematically lead 
to a change in scores (Copy-Random, centroid = -0.02) 
and those whose responses were untouched (Natural-
Response, centroid = -0.56). It is reasonable that C

i
* and 

H
i
T define this function, given that they are based on 

already-scored items and do not “see” any patterns among 
the incorrect answers; they are therefore sensitive only to 
effects on item scores specifically.

Structure coefficients for the second function reveal 
that it is most strongly associated with the Z

i
, J

2
, and J

3
 

indices. The group centroids suggest that after systematic 
impact on scores are accounted for by the first function, 
the second function provides further differentiation with 
respect to the overall presence of response similarities, 
in that the Copy-Upward group (centroid = 3.39) and to 
a much lesser degree the Copy-Random group (centroid 
= 0.62) are contrasted with the Pre-Knowledge group 
(centroid = -1.95), while the Natural-Response group is 

TABLE 3.   DESCRIPTIVE STATISTICS FOR ALTERNATIVE INDICES

TABLE 4.   CORRELATIONS AMONG STATISTICAL INDICES
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relatively neutral (centroid = -0.12). It makes sense that 
Z

i
, J

2
, and J

3
  define this function since all three of these 

indices use the overall number of matching responses 
between pairs of test-taker’s as their basis and “see” the 
presence of patterns among the incorrect options that are 
missed by the first function.

The structure coefficients for the third function reveal that 
it is most strongly associated with the B and κ

r 
indices, and 

group centroids suggest that it differentiates a residual 
pattern in the Copy Random group (centroid = 1.56) from 
the other three groups (centroids = -0.08, 0.05, and -0.30). 
Angoff ’s B index specifically analyzes matching errors, 
and the κ

r
 index involves distinguishing correct responses 

from incorrect responses and sets up an error term that 
especially contrasts model-predicted patterns among the 
errors with chance responding. While this function was not 
as strong as the first and second and was not anticipated 
in advance as a distinct pattern from function 2, it suggests 
that error similarity indices may in fact provide somewhat 
distinct information for detecting the presence of fairly 
random patterns of cheating.

Figure 1 displays the group centroids of the discriminant 

function scores in a profile plot in order to more easily 
visualize how the functions differentiate groups. This 
plot clearly shows the different profile patterns for the 
Pre-Knowledge and Copy-Upward groups, and to a much 
lesser degree the Copy-Random group. The ability of these 
functions to accurately differentiate groups is summarized 
in Table 6 as classification accuracy results. The diagonal 
of the percent section reveals that 97.0%  
of the Natural Responses group was correctly classified  
as such, and most of the false positives for this group were 
classified as random copiers. The Pre-Knowledge group 
was 100% correctly classified. The Copy-Upward group had 
a 7.7% false negative rate with 91.0% correctly classified 
and 1.3% classified as aberrant but placed in the Pre-
Knowledge group. The much less systematic Copy Random 
group had a much lower rate of correct classification with 
32.1% correctly classified and a 67.9% false negative rate. 
Totals along the bottom of the table further show that 
relative to the size of the haystack (85% of sample) and 
needles (5% each), the Copy-Random group is 1.5% under-
detected, with most of those cases being misclassified as 
natural responders.

TABLE 5.   DISCRIMINANT FUNCTIONS ANALYSIS ON MULTIPLE STATISTICAL INDICES
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5.3 Discriminant Function Analysis Assumptions

While the discriminant function analysis has elucidated 
meaningful patterns of results in the data that support 
the distinction between presence and impact of aberrant 
response patterns, practical application as a method of 
computing composite scores across multiple indices 
would involve derivation of a stable set of classification 
coefficients to weight and score individuals’ index profiles 
and categorize them into groups. At that level of specificity 
in deriving a set of stable parameters that will cross-
validate across samples, it would become paramount that 

the parameters be derived within a context where model 
assumptions are sufficiently met. 

To this end, homogeneity of variances was evaluated by 
taking the ratio of largest to smallest group variances 
for each of the seven indices, and ratios of 2.7 to 5.2 
were found. These ratios indicate a modest degree of 
heterogeneous variances, and consistently, the “Copy-
Up” group had the largest variance. In terms of normality, 
the C

i
*, H

i
T, and κ

r
 indices had relatively normal skewness 

and kurtosis values (well within ±1) across all groups 
but the other indices tended to have larger degrees of 

FIGURE 1.  GROUP PROFILES BASED ON DISCRIMINANT FUNCTION SCORES.

TABLE 6.   CLASSIFICATION ACCURACY OF DISCRIMINANT FUNCTION SCORES
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positive skew and leptokurtosis in the Natural Response 
and Pre-Knowledge groups. In terms of the independence 
assumption we did not run a statistical test but note that 
in the Pre-Knowledge condition there is notable potential 
for within-group non-independence resulting from the 
manipulated cheating patterns relating back to a common 
source of correct answers for each of the four item sets. 
There is also non-independence between each of the 
Copy groups and the Natural Response group where their 
sources resided. While these assumptions are typically 
most problematic for error rates associated with statistical 
significance tests which were not the primary focus in 
the study, violations can impact the estimation of model 
parameters as well.

While the analysis of standard assumptions above raised 
potential concerns, of likely more consequence in the 
practical application of a discriminant function model for 
this purpose is the high degree of collinearity among some 
of the alternative statistical indices of aberrant responding, 
indicated by high correlations in Table 4 and especially 
the low tolerance values in Table 5. Multicollinearity is 
known to produce instability in parameter estimation for 
discriminant analysis (e.g., Naes & Mevik, 2001), suggesting 
that deriving stable coefficients for practical application 
may be problematic. One strategy for eliminating 
multicollinearity is to remove highly correlated predictors, 
which we explored as a strategy in the current analysis 
by re-running the analysis with only three predictors, 
selecting the one from each function in Table 5 that had 
the highest structure coefficient (i.e., C

i
*, Z

i
, κ

r
). A check 

on multicollinearity for these three predictors revealed a 
much-improved situation with tolerance values ranging 
from .49 to .69. The results were extremely similar to those 
in Table 5 in terms of the patterns of group centroids, with 
the most notable difference being a drop in the centroid 
value of the Copy-Random group on Function 3 from 1.56 
to 1.22. Accordingly, comparison of classification accuracy 
to Table 6 revealed that the percents were identical for 
the first three groups, but the Copy-Random percentage 
dropped from 32.1 to 20.5. 

For the first two patterns at least – namely score impact 
and response similarity – this analysis suggests that if 
the goal is to identify the most effective subset of indices 
that differentiates the groups in this sample, using the 
discriminant function analysis and selecting from the 
highest structure coefficients appears effective for this 
use. This strategy, however, leaves open the possibility that 
if the rank-orders of structure coefficients within each 
function vary across different Monte Carlo conditions 
or across different real-world scenarios, the results from 
the single selected index might not cross-validate. One 
of the initial objectives of the current study was to devise 
a method that allows for combining multiple indices in 
a way that might allow their strengths and weaknesses 

in sensitivities to varied scenarios in practice (e.g., test 
lengths, fit to item response models, etc.) to balance out. 
Thus, in line with the initial goal of the current study, we 
sought to explore an alternative methodology that would 
allow for retention of multiple correlated indices within 
each pattern (pre-knowledge, answer copying, etc.), on 
the premise that they might collectively prove to be more 
stable in the long run across different situations than any 
of them would be alone.

5.4 An Alternative Strategy: Profile Similarity 
Analysis

An alternative approach was explored to analyze 
similarities (i.e., fit) to model profiles across the observed 
measures, where the model profiles were derived to 
represent expected patterns resulting from the different 
cheating strategies. Test-taker’s were then classified into 
the group they displayed the closest fit to. 

The first step in this approach was to define the model 
profiles. The left panel of Figure 2 shows the average 
standardized index values across the seven indices for 
each group. Note that the graph reveals similar patterns 
of differentiations among the groups as the function 
profiles did in Figure 1. While these average profiles could 
be used directly, they are subject to sampling error and we 
sought to establish a heuristic set of values that might be 
applicable across multiple exams; we therefore used the 
averages to guide development of a set of model profiles 
shown in the pattern coefficients on right panel of Figure 2. 

In doing this we essentially rounded the averages to their 
nearest integer; for example, the Pre-Knowledge averages 
were rounded to a pattern of 6, 6, 1, 1, -3, -2, -2. This method, 
however, resulted in a fairly flat line for the Copy-Random 
group with coefficients of 0, 0, 1, 1, 1, 1, 1 which was not very 
distinguishing from the Natural Response pattern of all 0’s. 
In order to force a stronger distinction between this model 
profile and the Natural-Response profile, we increased 
the coefficients as shown in the right panel of Figure 2, 
to 0, 0, 2, 2, 2, 3, 3, which maintained the shape of the 
corresponding average profile in the left panel of the Figure 
2 but slightly exaggerated the model pattern.

Next, fit of each test-taker’s individual observed profile to 
each of the heuristic model profiles was assessed with the 
similarity index D, which is the square root of the sum of 
the squared deviations of a test-taker’s index values from 
the model values. Smaller D values indicate stronger fit to 
a particular model profile. Table 7 shows average D values 
for each group on each profile. Each profile fit best to its 
expected group, and all groups except Copy-Random fit 
best to their expected profile. The Copy-Random group’s 
fit to its own profile could be increased by adjusting the 
model coefficients that we exaggerated, but this has the 
effect of increasing false positive classifications among 
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FIGURE 2. GROUP PROFILES BASED ON AVERAGE (LEFT) AND HEURISTIC MODEL (RIGHT) STANDARDIZED INDEX VALUES.

TABLE 7. DESCRIPTIVE STATISTICS FOR PROFILE SIMILARITY FIT VALUES

TABLE 8. CLASSIFICATION ACCURACY OF PROFILE SIMILARITY-BASED GROUP CLASSIFICATIONS
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the Natural-Response group, so we opted not to maximize 
fit in this way.

Final classifications are shown in Table 8. In Table 8,  
each test-taker was assigned to the profile they had the 
greatest fit to (lowest D value), and these assignments 
were cross-tabulated with the actual group they belonged 
to in the simulation. Overall the results were consistent 
with the earlier discriminant function classifications, 
except for a slightly higher false positive rate for Natural-
Response test-taker’s and slightly lower false negative 
rates for the Copy-Up and Copy-Random groups. Totals 
along the bottom of the table show that the Copy-Random 
group is now 1.1% over-classified relative to its expected 
value of 5%, and the Natural-Response group is now 1.2% 
under-classified relative to its expected value of 85%. 
Nevertheless, the results overall are quite similar to those 
from the discriminant function analysis.

5.5 Cross-Validation of Model-Fit Based 
Classifications

Finally, the profile analysis method was cross-validated in 
a second exam through replication of the needle-haystack 
manipulation and computation of fit to the heuristic profile 
models in Figure 2. The mean D values in the second exam 
followed the same patterns as shown in Table 7 (and are 
therefore not provided), with each profile fitting best to 
its expected group, and all groups except Copy-Random 
fitting best to their expected profile. Again, the Natural-
Response and Copy-Random groups were not as distinct 
as the others. Classification results in Table 9 again show 
a similar pattern with the Copy-Random group being 
slightly over-classified and the Natural-Response group 
being slightly under-classified, resulting from the lesser 
distinctiveness of these two groups’ profiles.

For the sake of comparison, an additional discriminant 
function analysis was run in the cross-validation dataset 
with the reduced subset of predictors identified earlier: C

i
*, 

Z
i
, κ

r
. The same patterns emerged with the three functions 

being each defined by one of the three indices.

In terms of classification accuracy, the discriminant 
analysis results showed slightly higher accuracy rates for 
the Natural Response (97.5 vs. 94.3) and Pre-Knowledge 
(100.0 vs. 98.3) groups, identical rates for the Copy-Up 
group (91.4), but substantially lower rates for the Copy-
Random group (22.4 vs. 41.4). Further, a subsequent 
analysis including all seven of the original indices showed 
a stronger structure coefficient for B vs. κ

r
 meaning that 

had this sample been used first, a different exemplar of 
this function would have been selected. This supports the 
strategy of retaining multiple indices for each pattern.

6. Discussion
The purpose of this study was to evaluate the use of a 
suite of statistical detection indices for differentiating 
two patterns of cheating on multiple-choice tests: A 
pattern indicative of the presence of cheating and a 
pattern indicative of cheating that impacts test scores. 
Both are useful for quality-control monitoring of test 
security practices, such as monitoring test sites for 
evidence of security breaches, while the latter is of 
particular importance to situations where scores must be 
investigated and validated. The results of the discriminant 
function analysis supported this distinction and the 
sensitivity of different indices to each pattern, and also 
suggested that it may be useful to consider general 
response similarity and more specific error similarity 
indices separately in order to detect different patterns. 

TABLE 9. CLASSIFICATION ACCURACY OF PROFILE SIMILARITY IN CROSS-VALIDATION EXAM
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In the end, however, high collinearity among measures 
was deemed a limiting factor in the discriminant function 
analysis approach unless the purpose is to eliminate 
indices to include just one per pattern.

The profile similarity strategy revealed a promising 
alternative that does not require elimination of indices 
from the suite, where strong fit to either the pre-
knowledge or copy-upward models successfully identified 
cheating with score impact, while more moderate fit to the 
copy-upward and/or strong fit to the copy-random profiles 
helped detect the presence of cheating that did not as 
definitively impact scores. While to some degree this 
strategy resulted in a loss of distinction between impact 
and presence that was gained through the partialling in the 
discriminant function analysis, the practical outcome in 
terms of classification accuracy was not greatly affected. 
Further, the response process distinction between fitting 
the “pre-knowledge” profile more strongly than an answer-
copying or “response similarity” profile still provides 
information on the specific cheating strategy, in terms of 
the degree to which it appears to involve direct collusion 
between test-taker’s versus individual pre-knowledge of 
test content or answers. 

In this vein, it is also worth noting that for exploratory 
purposes we submitted the four D values for each test-
taker to discriminant function analysis in place of the suite 
of seven raw indices and found the same three functions 
to emerge with even somewhat more function clarity than 
our original results reported in this paper, and with much 
less collinearity. However, the practical outcome revealed 
similar classification accuracies as the simpler method of 
assigning people to groups based directly on their lowest 
D values. This demonstrates that if there is a theoretical 
need to partial impact first and estimate presence second 
via discriminant function analysis, the D values from the 
profile similarity approach can still be used to this end.

Further development of the profile similarity approach 
is warranted, especially to better distinguish patterns 
like our Copy-Random manipulation in order to not only 
detect this pattern more strongly but also to reduce the 
false-positive rate where some “natural-responders” are 
misclassified as having copied off on another (random 
ability) test-taker. One possibility is to add new or different 
error similarity indices to the profile, or other indices 
that are more sensitive to random copying. The profile 
analysis strategy developed in this study places no limit 
on the number of indices computed on each test-taker 

and allows for customization and adaptation to detect 
specific patterns of interest. Future research would benefit 
from conceptualizing additional profile models for other 
aberrant patterns of interest and carefully selecting and 
adapting the suite of indices to detect and differentiate 
those patterns. This strategy thus allows for theory 
development and testing of proposed aberrant response 
models at a broader level than much of the extant research 
which focuses on statistical detection rates of individual 
indices under specific conditions.

An open question for this line of research is how 
generalizable the specific numeric values of the heuristic 
model profiles in Figure 2 are across a number of 
potentially relevant factors such as test length, degree 
of fit to a particular item response model (e.g., the Rasch 
model, as in the current study), and any other factors 
that impact the sensitivity of individual statistical indices 
within the profile. H

i
T, for example, is sensitive to the length 

of the test (Dimitrov & Smith, 2006), the percentage of 
aberrant item responses (St-Onge et al., 2011), and the 
degree to which items have sufficiently monotonic and 
parallel item response functions (Sijtsma & Meijer, 1992), 
and other indices not used in the current study often 
include item probabilities from an item response model 
(e.g., Frary et al., 1977; Wollack, 1997). To what degree will 
multidimensionality or other causes of poor fit of a test’s 
items to a response model suppress or render inconsistent 
the values of these statistical indices, and make it more 
difficult to detect patterns consistent with the profile 
models? This is not a unique problem to the approach in 
the current study, and in fact would be an even greater 
problem if only a single index were used or even one per 
pattern, so strengths and weaknesses of multiple indices 
across such conditions could not be balanced out.

For future development of profile models, it would be 
prudent to ensure that the specific indices selected 
for the suite are robust across multiple variations in 
conditions they will be applied in, and that alternative 
indices be included that are each robust to different sets of 
conditions, so they can balance each other out. Likewise, 
it would be prudent to adjust the heuristic model values if 
future research (e.g., based on simulations) shows different 
model values to be more optimal. With some further 
development and fine-tuning of these types of details, the 
profile similarity approach holds promise in advancing test 
fraud detection through forensic data analysis.
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